If it's not what You are looking for type in the equation solver your own equation and let us solve it.
256x^2+9x-81=0
a = 256; b = 9; c = -81;
Δ = b2-4ac
Δ = 92-4·256·(-81)
Δ = 83025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{83025}=\sqrt{2025*41}=\sqrt{2025}*\sqrt{41}=45\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-45\sqrt{41}}{2*256}=\frac{-9-45\sqrt{41}}{512} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+45\sqrt{41}}{2*256}=\frac{-9+45\sqrt{41}}{512} $
| 8x-34+4x+12+6x-14=360 | | 4x+21=11x | | z-9=-15 | | 12=n/4+15 | | 6+-4d=18 | | -3g+-7=8 | | 2=3p=10 | | j/4-6=-2 | | b/4-2=12 | | -2w+-5=-19 | | -4u+9=-3 | | h/3-18=-14 | | q/4-17=-15 | | -2=3(y-2) | | 10-4v=14 | | -4x^2-6=9 | | -0.11+-2t=6.69 | | 4u=-596 | | 2(2x+3)=2(3x+5) | | z+44=94 | | q-33=66 | | x+10+2x=56 | | h^2+3/7=12 | | 7x-19+11x-89+120=180 | | 4x+23+10x-1+146=180 | | 3m2=675 | | s+110=838 | | -21r=-735 | | g+567=772 | | 3(2n-4)-1/4=3/4(n+4) | | g+111=379 | | z+39=71 |